Important variables in explaining real-time peak price in the independent power market of Ontario

نویسندگان

  • Ismael E. Arciniegas Rueda
  • Achla Marathe
چکیده

This paper uses support vector machines (SVM) based learning algorithm to select important variables that help explain the realtime peak electricity price in the Ontario market. The Ontario market was opened to competition only in May 2002. Due to the limited number of observations available, finding a set of variables that can explain the independent power market of Ontario (IMO) real-time peak price is a significant challenge for the traders and analysts. The kernel regressions of the explanatory variables on the IMO real-time average peak price show that non-linear dependencies exist between the explanatory variables and the IMO price. This non-linear relationship combined with the low variable-observation ratio rule out conventional statistical analysis. Hence, we use an alternative machine learning technique to find the important explanatory variables for the IMO real-time average peak price. SVM sensitivity analysis based results find that the IMO’s predispatch average peak price, the actual import peak volume, the peak load of the Ontario market and the net available supply after accounting for load (energy excess) are some of the most important variables in explaining the real-time average peak price in the Ontario electricity market. 2004 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Price Forecasting and Optimal Operation of Wholesale Customers in a Competitive Electricity Market

This thesis addresses two main issues: first, forecasting short-term electricity market prices; and second, the application of short-term electricity market price forecasts to operation planning of demand-side Bulk Electricity Market Customers (BEMCs). The Ontario electricity market is selected as the primary case market and its structure is studied in detail. A set of explanatory variable cand...

متن کامل

A New Iterative Neural Based Method to Spot Price Forecasting

Electricity price predictions have become a major discussion on competitive market under deregulated power system. But, the exclusive characteristics of electricity price such as non-linearity, non-stationary and time-varying volatility structure present several challenges for this task. In this paper, a new forecast strategy based on the iterative neural network is proposed for Day-ahead price...

متن کامل

Energy Scheduling in Power Market under Stochastic Dependence Structure

Since the emergence of power market, the target of power generating utilities has mainly switched from cost minimization to revenue maximization. They dispatch their power energy generation units in the uncertain environment of power market. As a result, multi-stage stochastic programming has been applied widely by many power generating agents as a suitable tool for dealing with self-scheduling...

متن کامل

Market Based Analysis of Natural Gas and Electricity Export via System Dynamics

By increasing the extraction of natural gas, its role in the restructured power systems is being expanded, due to its lower pollution. Iran has the second largest reserves of natural gas in the world and exports it to different countries. This paper represents long run analysis of natural gas export from Iran to Turkey as a case study, considering direct transfer and exporting via the power mar...

متن کامل

مدل پاسخ بار الکتریکی مبتنی بر برنامه‌ریزی تصادفی

Incorporating the demand response program (DRP) is one of the best approaches to increase the efficiency level and improving the competitive electricity market performance. In a competitive market, consumers can response to the wholesale market price variations during different time scale. The DRP allows the independent system operator to decrease the price volatility in peak hours. Different r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004